声测管(sounding pipe)是灌注桩进行超声检测法时探头进入桩身内部的通道。它是灌注桩超声检测系统的重要组成部分,它在桩内的预埋方式及其在桩的横截面上的布置形式,将直接影响检测结果。因此,需检测的桩应在设计时将声测管的布置和埋置方式标入图纸,在施工时应严格控制埋置的质量,以确保检测工作顺利进行。
声脉冲从发射换能器发出,通过耦合水到达水和声测管管壁的界面,再通过管壁到达声测管管壁与混凝土的界面,穿过混凝土后又需穿过另一声测管的两个界面而到达接收换能器。
声测管可直接固定在钢筋笼内侧上:固定方式可采用焊接或绑扎,管子之间应基本上保持平行-若检测结果需对各测点混凝土的强度做出评估,则不平行度应控制在1‰以下。钢筋笼放入桩孔时应防止扭曲。[1]
管子一般随钢筋笼分段安装,每段之间的接头可采用反螺纹套筒接口或套管焊接方案,如图8所示:若采用波纹管则可利用大一号的波纹管套接,并在套接管的两端用胶布缠绕密封。无论那种接头方案都必须保证在较高的静水压力下不漏浆,接口内壁应保持平整,不应有焊渣、毛刺等凸出物,以免妨碍探头的自如移动,声测管的底部也应密封,安装完毕后应将上口用木塞堵住,以免浇灌混凝土时落人异物,致使孔道堵塞。
优点是便于安装,可用电焊焊在钢筋骨架外,可代替部分钢筋截面,而且由于钢管刚度较大.埋置后可基本上保持其平行度和平直度,许多大直径灌注桩均采用钢管作为声测管。但钢管的价格较贵,但鸿冶管业新型钳压式声测管就很好的解决了这个问题。
优点是管壁薄、钢材省和抗渗、耐压、强度高、柔性好等特点,通常用于预应力结构中的后张法预留孔道:用做声测管时。可直接绑扎在钢筋骨架上,接头处可用大一号波纹管套接。由于波纹管很轻,因而操作十分方便,但安装时需注意保持其轴线的平直。
优点是声阻抗率较低,用做声测管具有较大的透声率,通常可用于较小的灌注桩,在大型灌注桩中使用时应慎重,因为大直径桩需灌注大量混凝土,水泥的水化热不易发散:鉴于塑料的热膨胀系数与混凝土的相差悬殊,混凝土凝固后塑料管因温度下降而产生径向和纵向收缩,有可能使之与混凝土局部脱开而造成空气或水的夹缝,在声通路上又增加了更多反射强烈的界面,容易造成误判。
声测管的直径,通常比径向换能器的直径大l0mm即可,常用规格是内径50-60mm。管子的壁厚对透声率的影响很小,所以,原则上对管壁厚度不作限制,但从节省用钢量的角度而言,管壁只要能承受新浇混凝土的侧压力,则越薄越省。
布置声测管的埋置数量及其在桩的横截面卜的布局应考虑检测的控制面积。通常有如图7所示的布置方式,图中的阴影区为检测的控制面积。
一般桩径小于0.6~1m时,沿直径布置两根;桩径为1~2.5m时,布置3根,呈等边三角形;桩径大于2.5m时,布置4根,呈正方形。
声测管除了用作检测通道及取代一部分钢筋截面外,还可作为桩底压浆的管道。试验证明,经桩底浆处理的灌注桩,可大幅度提高其承载力。同时声测管还可作为事故桩缺陷冲洗与压浆处理的管道,这时需采取措施把需压浆的缺陷部位的管道打穿。
超声波透射法检测,对声测管总体的要求是:接头牢靠不脱开,密封不漏浆;管壁平整不打折,平顺无变形;管体竖直不歪斜;管内畅通无异物。
当声测管材料或安装工艺较差时,可能造成漏浆、堵管、断裂、弯曲、下沉、变形等事故的发生,对超声波透射法进行桩基完整性检测产生较大影响,甚至于无法进行超声波透射法检测。
基于以上情况,我们通过相应的理论计算和大量的工程实践,鸿冶管业推出了新型改良产品——高强双环液压声测管。
高强双密封液压声测管在承口端端部设计了两个凸槽,凸槽内配有密封圈,安装时将本产品的插口端插入承口端10cm,然后用专用液压钳同时对两个凸槽进行挤压,被挤压部位的管材受力后收缩变形,两个凸槽之间的外层管材深陷入内层管材,从而有效实现了本产品的可靠连接;同时橡胶材质的密封圈在受挤压后变形贴服在两层管材之间,起到了极为良好的双保险密封作用。
高强双密封液压声测管的优点主要是充分考虑到声测管在使用中所涉及的各种要素,从各方面达到国内乃至世界领先的性能。
高强双密封液压声测管除了有以上领先的性能以外,还具有另外两大明显的优点和一套严谨的保障措施。
便利性使用本产品,可以完全避免现场焊接、套丝或滚槽作业,无需电力辅助,只需采用配套的液压工具,手动操作即可轻松完成,省时、省力,一次性安装成功。
经济性和常规设计的φ57×3.5mm的钢管相比,可节省钢材2/3以上,材料成本明显降低;作为目前国内操作性最为简便的声测管产品,可在各个环节节省最大的人力成本,并能明显提高工作效率;在各种连接方式的薄壁声测管中,本产品可在现场根据需要进行任意长度的锯切使用,无短管和料头的浪费,实际总成本明显降低。
声测管一般来说有两种规格,一种是直插式的声测管,一种是钳压式的声测管,两者价格差异主要在接头上,其他上面倒是没有多少的差别。一般是6米长,内径是50毫米的钢管。壁厚对应于不同的桩基深度有所不同。
声测管主要有底管,中管以及接头管,防尘盖(封口用的)四部分组成,一根管是6m长,根据桩基的深度可以加入多根中管以及接头管,一般的一根管(6米)管配备一根接头管,而一个桩基配2~4个防尘盖(大多数配3个)。底管是一端封口,一端开口;中管是两端都开口的空心管。
在较深的桥梁码头高层建筑钻孔灌注桩施工中,对于灌柱桩基检测要求采用声波透射法检测桩基质量,按照设计要求应该预埋检测管(声测管)。桩径0.8m以下的需埋设两根检测管,两根检测管必须固定在钢筋笼内同一直线m的需埋设三根检测管,三根检测管必须呈等腰三角形固定在钢筋笼内。2.0m以上的需埋设四根检测管,四根检测管必须呈正方形固定在钢筋笼内。常规要求采用外径50-60mm的钢管,壁厚3.5mm左右,施工中采取现场焊接法。
这种方法在施工中所需成本高,操作复杂,给现场施工带来极大不便,施工成本只占普通焊管成本1/3左右。鸿冶管业的高强度双环液压声测管大大提高了工作效率,降低了施工成本。
因声测管的焊接技术要求很高,需有专业的焊接人员。为保证桩基混凝土的质量,在桩基灌注过程中均有时间限定,采用焊接的检测管在钢筋笼对接过程中,还得焊接检测管,给钻孔灌注增加了施工风险。
而鸿冶管业生产的声测管在安装过程中只需上管插入下管,然后用简单的工具稍加紧固可。无须焊接,无须电力,无需任何技术,大大节约了施工时间,避免了过长时间的安装给施工带来的风险,大幅提高了工作效率。
桩基在混凝土灌柱时对声测管的密封性、抗渗性、抗拉性、抗扭矩、抗压等方面的要求特别严格,生产及安装中稍有不慎将造成堵管、渗漏或管变形,桩基检测将无法完成。现场焊接无法检测管壁、接口及管底的封头密封性,因此抗渗漏性能很难保证。
而鸿冶管业所生产的双环钳压声测管从原料采购就由专人严把质量关,生产前后经过多次检测,产品成型后再需经三道检测工序即初检、气检、水检。确保产品合格率为100%,从而保证了桩基质检要求。
声测管安装好之后,按照超声波换能器通道在桩体中的不同的布置方式,超声波透射法基桩检测主要有三种方法:
此法是一种较成熟可靠的方法,是超声波透射法检测桩身质量的最主要形式,其方法是在桩内预埋两根或两根以上的声测管,在管中注满清水,把发射、接收换能器分别置于两管道中。检测时超声波由发射换能器出发穿透两管间混凝土后被接收换能器接收,实际有效检测范围为声波脉冲从发射换能器到接收换能器所扫过的面积。根据不同的情况,采用一种或多种测试方法,采集声学参数,根据波形的变化,来判定桩身混凝土强度,判断桩身混凝土质量,跨孔法检测根据两换能器相对高程的变化,又可分为平测、斜测、交叉斜测、扇形扫描测等方式,在检测时视实际需要灵活运用。 [5]
在某些特殊情况下只有一个孔道可供检测使用,例如在钻孔取芯后,我们需进一步了解芯样周围混凝土质量,作为钻芯检测的补充手段,这时可采用单孔检测法,此时,换能器放置于一个孔中,换能器间用隔声材料隔离(或采用专用的一发双收换能器)。超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。需要注意的是,运用这一检测方式时,必须运用信号分析技术,排除管中的影响干扰,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。
当桩的上部结构已施工或桩内没有换能器通道时,可在桩外紧贴桩边的土层中钻一孔作为检测通道,检测时在桩顶面放置一发射功率较大的平面换能器,接收换能器从桩外孔中自上而下慢慢放下,超声波沿桩身混凝土向下传播,并穿过桩与孔之间的土层,通过孔中耦合水进入接收换能器,逐点测出透射超声波的声学参数,根据信号的变化情况大致判定桩身质量。由于超声波在土中衰减很快,这种方法的可测桩长十分有限,且只能判断夹层、断桩、缩颈等。
无缝钢管具有中空截面,大量用作输送流体的管道,如输送石油、天然气、煤气、水及某些固体物料的管道等。钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,已广泛用钢管来制造。
钢管的使用是由1815年苏格兰的一位发明家为输送灯火用煤气而将枪筒连接起来才开始的。无缝钢管1836年英国已经有了挤压法专利,但直到1885年孟内斯曼(Manmesmann)兄弟才发明了由棒钢直接生产无缝钢管的工艺。
美国商务部2010年2月24日宣布初裁决定,对从中国进口的无缝钢管征收从11.06%至12.97%不等的反补贴关税。美国商务部在一份声明中说,从2006年至2008年,美国从中国进口的无缝钢管增加了131.52%,金额增至约3.82亿美元。
2011年10月,美国商务部应美国钢铁公司、V&M Star公司、TMK IPSCO公司以及美国钢铁工人联合会的要求,就反补贴案立案。当时,中国商务部官员曾表示,盲目指控自中国进口产品存在倾销或者补贴,缺乏事实依据,中方对此坚决反对。
2011年11月初,美国国际贸易委员会已就此作出初裁决定。日程显示,美国商务部将于2011年5月份作出终裁,美国国际贸易委员会将于6月份作出终裁。
世界银行负责国际贸易研究的高级经济学家查德·布朗向新华社记者提供的一份最新研究报告显示,2009年,全球实施的反补贴、反倾销、特保等贸易限制政策数量比2008年增加29.5%。贸易保护主义措施已成为影响世界经济复苏的一个重要隐患。
无缝钢管具有中空截面,大量用作输送流体的管道,如输送石油、天然气、煤气、水及某些固体物料的管道等。是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,如滚动轴承套圈、千斤顶套等,已广泛用钢管来制造。山东聊城被称作“无缝钢管之都”,例如聊城鑫鹏源无缝钢管厂生产大口径无缝钢管。常备资源材质为: 10#、20#、35#、45#、16Mn、27SiMn、40Cr、12Cr1MoV、10CrMo910、15CrMo、35CrMo、45Mn2等。
2014年,我国共生产钢管8898.01万吨,比上年增加459.12万吨,增长5.44%,与上年增速13.88%相比,回落8.44个百分点。全年钢管产量在我国钢材总产量中的占比为7.91%。
2014年我国钢管表观消费量8006.90万吨,比上年增加426.21万吨,增长5.62%,与上年增速15.45%相比,回落9.83个百分点;钢管表观消费量增速高于产量0.18个百分点,说明总体产销处于一个较为平稳的态势。
前瞻产业研究院《中国无缝钢管行业发展前景预测与转型升级分析报告》数据显示,2014年我国共生产无缝钢管3137.02万吨,比上年增加5.93万吨,增幅为0.19%,与上年增速13.67%相比,回落13.48个百分点。无缝钢管表观消费量2633.13万吨,比上年减少8.73万吨,降幅为0.33%,与上年增速16.92%相比,回落17.25个百分点。
2014年,我国焊接钢管产量为5760.99万吨,比上年增加453.18万吨,增长8.54%,与上年增速14.0%相比,回落5.46个百分点。焊接钢管表观消费量5373.77万吨,比上年增加435.24万吨,增长8.81%,与上年增速14.69%相比,回落5.88个百分点。
自3月以来,国内钢厂无缝钢管产量释放总体有所放缓。2012年10月我国无缝钢管产量是248万吨,较去年同期同比增长8.6;1-10月全国累计生产无缝钢管达2285.9万吨,累计同比增长6.9%。
2012年11月我国无缝钢管产量是257.2万吨,较去年同期增加了29.9万吨,实现同比增长13.2%,环比增长3.71%;1-11月全国累计生产无缝钢管达2563.5万吨,累计同比增长8.2%。
随着无缝钢管行业竞争的不断加剧,大型无缝钢管企业间并购整合与资本运作日趋频繁,国内优秀的无缝钢管生产企业愈来愈重视对行业市场的研究,特别是对企业发展环境和客户需求趋势变化的深入研究。正因为如此,一大批国内优秀的无缝钢管品牌迅速崛起,逐渐成为无缝钢管行业中的翘楚!
钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。
试样在拉伸过程中,在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:
式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。
具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。
上屈服点(σsu):试样发生屈服而力首次下降前的最大应力; 下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。
式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。
在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为:
式中:L1--试样拉断后的标距长度,mm; L0--试样原始标距长度,mm。
在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。以
表示,单位为%。计算公式如下:
式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。
金属材料抵抗硬的物体压陷表面的能力,称为硬度。根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。
用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS(钢球)表示,单位为N/mm2(MPa)。
式中:F--压入金属试样表面的试验力,N; D--试验用钢球直径,mm; d--压痕平均直径,mm。
测定布氏硬度较准确可靠,但一般HBS只适用于450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。
1 抗拉强度 σb MPa 金属试样拉伸时,在拉断前所承受的最大负荷与试样原横截面面积之比称为抗拉强度Pbσb=——Fo 式中 Pb——试样拉断前的最大负荷(N)Fo——试样原横截面积(mm )
抗弯强度 σbb MPa 试样在位于两支承中间的集中负荷作用下,使其折断时,折断截面所承受的最大正压力8PL对圆试样:σbb=——πd 8PL对矩形试样:σbb=—— 2bh式中 P——试样所承受最大集中载荷(N) L——两支承点间的跨距(mm)d——圆试样截面之外径(mm)b——矩形截面试样之宽度(mm)h——矩形截面试样之宽度(mm)
1.建筑类的有:底下管道输送最多较多、盖楼时抽取地下水、锅炉热水输送用等。
无缝钢管具有中空截面,大量用作输送流体的管道,如输送石油、天然气、煤气、水及某些固体物料的管道等。钢管与圆钢等实心钢材相比,在抗弯抗扭强度相同时,重量较轻,是一种经济截面钢材,广泛用于制造结构件和机械零件,如石油钻杆、汽车传动轴、自行车架以及建筑施工中用的钢脚手架等 用钢管制造环形零件,可提高材料利用率,简化制造工序,节约材料和加工工时,如滚动轴承套圈、千斤顶套等,已广泛用钢管来制造。钢管还是各种常规武器不可缺少的材料,枪管、炮筒等都要钢管来制造。钢管按横截面积形状的不同可分为圆管和异型管。由于在周长相等的条件下,圆面积最大,用圆形管可以输送更多的流体。此外,圆环截面在承受内部或外部径向压力时,受力较均匀,因此,绝大多数钢管是圆管。
但是,圆管也有一定的局限性,如在受平面弯曲的条件下,圆管就不如方、矩形管抗弯强度大,一些农机具骨架、钢木家具等就常用方、矩形管。根据不同用途还需有其他截面形状的异型钢管。
1.GB/T8162-1999(结构用无缝钢管镀锌钢管理论重量)。主要用于一般结构和机械结构 。其代表材质(牌号):碳素钢、20、45号钢;合金钢Q345、20C镀锌钢管价格r、40Cr、20CrMo、30-35CrMo、42CrMo等。
2.GB/T8163-1999(输送流体用无缝钢管)。主要用于工程及大型 设备上输送流体管道。代表陶瓷复合钢管材质(牌号)为20、Q345等。
3.GB3087-1999(低无锡无缝钢管中压锅炉用无缝钢管)。主要用于工业锅炉及生活锅炉 输送低中压流体嘚管道。代表材质为10、20号钢。
4.GB5310-1995 (高压锅炉用无缝钢管)。主要用于电站及天津无缝钢管核电站锅炉上耐高温、高压嘚输送流体集箱及管道。代表材质为20G、 12Cr1MoVG、15CrMoG钢管脚手架等。
5.GB5312-1999(船舶用碳钢和碳 锰钢无缝钢管)。中国无缝钢管网主要用于船舶锅炉及过热器用I、II级耐压管等。代表材质为360、410、460钢级等。
6.GB1479-2000(高压化肥设备用无缝钢管)。主要用于化肥设备上输天津钢管集团送高 温高压流体管道。代表材质为20、16Mn、12CrMo、12Cr2Mo等。
7.GB9948-1988(石油裂化用无缝钢管)。主要用于石油冶炼厂嘚锅炉、热交换脚手架钢管价格器及其输送流体管道。其代表材质为 20、12CrMo、1Cr5Mo、1Cr19Ni11Nb等。
8.GB18248-2000(气瓶用 无缝钢管)。主要用于制作各种燃气焊接钢管、液压气瓶。其代表材质为37Mn、34Mn2V、35CrMo等。
另外,还有GB/T1大口径厚壁无缝钢管7396-1998(液压支柱用热轧无缝钢管)、GB3093- 1986(柴油机用高压无缝钢管)、GB直缝钢管/T3639-1983(冷拔或冷轧精密无缝钢管)、GB/T3094-1986(冷拔无缝钢管异形钢管 不锈钢无缝钢管)、GB/T8713-1988(液压和气动筒用精密内径无缝钢管)、GB13296-1991(锅炉、无缝钢管热交换器用不锈钢无缝 钢管)、GB/T14975-1994(结构用不锈钢无缝钢管)、GB/T1497无锡钢管6-1994(流体输送用不锈钢无缝钢管)GB/T5035-1993(汽 车半轴套管用无缝钢管)、AP天津钢管价格I SPEC5CT-1999(套管和油管规范)等。
1、汽车用管(别克轿车专用)小口径高压锅炉管按国内外标准或行业标准生产210C、15CrMoG、12Cr1MoVG、T12~T91系列钢管
5、桁架臂专用管(整体调质管)协议标准,20Mn2B、20Mn2、Φ14615等,用于履带式塔吊用起重设备
6、专用缸筒和支架用管 T91、钢102系列高压锅炉管GB5310-1995,用于热电站高温、高压环境
8、超高强度结构管35CrMnsi、30CrMnSiNi2A,用于军工、飞机起落架用管
10、岩矸管协议标准J55、Φ266、Φ316等,用于高速公路、大型水电站大坝加固用
按美标生产的锅炉和过热器用中碳钢无缝钢管ASTM A210、210C、Φ606
一般的无缝钢管的生产工艺可以分为冷拔与热轧两种,冷轧无缝钢管的生产流程一般要比热轧要复杂,管坯首先要进行三辊连轧,挤压后要进行定径测试,如果表面没有响应裂纹后圆管要经过割机进行切割,切割成长度约一米的坯料。然后进入退火流程,退火要用酸性液体进行酸洗,酸洗时要注意表面是否有大量的起泡产生,如果有大量的起泡产生说明钢管的质量达不到响应的标准。外观上冷轧无缝钢管要短于热轧无缝钢管,冷轧无缝钢管的壁厚一般比热轧无缝钢管要小,但是表面看起来比厚壁无缝钢管更加明亮,表面没有太多的粗糙,口径也没有太多的毛刺。 热轧无缝钢管的交货状态一般是热轧状态经过热处理后进行交货。热轧无缝钢管在经过质检后要经过工作人员的严格的手工挑选,在质检后要进行表面涂油,然后紧接着是多次的冷拔实验,热轧处理后要进行穿孔的实验,如果穿孔扩径过大就要进行矫直矫正。在矫直后再由传送装置传送到探伤机进行探伤实验,最后贴上标签、进行规格编排后放置到到仓库当中。
圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库 无缝钢管是用钢锭或实心管坯经穿孔制成毛管,然后经热轧、冷轧或冷拨制成。无缝钢管的规格用外径*壁厚毫米数表示。无缝钢管分热轧和冷轧(拨)无缝钢管两类。 热轧无缝钢管分一般钢管,低、中压锅炉钢管,高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、地质钢管和其它钢管等。冷轧(拨)无缝钢管除分一般钢管、低中压锅炉钢管、高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、其它钢管外,还包括碳素薄壁钢管、合金薄壁钢管、不锈薄壁钢管、异型钢管。热轧无缝管外径一般大于32mm,壁厚2.5-200mm,冷轧无缝钢管处径可以到6mm,壁厚可到0.25mm,薄壁管外径可到5mm壁厚小于0.25mm,冷轧比热轧尺寸精度高。
一般用无缝钢管是用10、20、30、35、45等优质碳结钢16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合结钢热轧或冷轧制成的。10、20等低碳钢制造的无缝管主要用于流体输送管道。45、40Cr等中碳钢制成的无缝管用来制造机械零件,如汽车、拖拉机的受力零件。一般用无缝钢管要保证强度和压扁试验。热轧钢管以热轧状态或热处理状态交货;冷轧以热以热处理状态交货。
热轧,顾名思义,轧件的温度高,因此变形抗力小,可以实现大的变形量。以钢板的轧制为例,一般连铸坯厚度在230mm左右,而经过粗轧和精轧,最终厚度为1~20mm。同时,由于钢板的宽厚比小,尺寸精度要求相对低,不容易出现板形问题,以控制凸度为主。对于组织有要求的,一般通过控轧控冷来实现,即控制精轧的开轧温度、终轧温度.圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库
管坯——检验——剥皮——检验——加热——穿孔——酸洗——修磨——润滑风干——焊头——冷拔——固溶处理——酸洗——酸洗钝化——检验——冷轧——去油——切头——风干——内抛光——外抛光——检验——标识——成品包装
管坯——检验——剥皮——检验——加热——穿孔——酸洗——修蘑——润滑风干——焊头——冷拔——固溶处理——酸洗——酸洗钝化——检验——恒温存放——交货
1.用途:无缝钢管是一种经济断面钢材,在国民经济中具有很重要的地位,广泛应用于石油、化工、锅炉、电站、船舶、机械制造、汽车、航空、航天、能源、地质、建筑及军工等各个部门。
管坯准备及检查△→管坯加热→穿孔→轧管→钢管再加热→定(减)径→热处理△→成品管矫直→精整→检验△(无损、理化、台检) →入库
①钢的化学成分:钢的化学成分是影响无缝钢管性能最主要的因素之一,也是制定轧管工艺参数和钢管热处理工艺参数的主要依据。
c. 有害元素:严格控制(As、Sn、Sb、Bi、Pb),气体(N、H、O)
炉外精炼或电渣重熔:提高钢中化学成分的均匀性和钢的纯净度,减少管坯中的非金属夹杂物并改善其分布形态。
. 钢管壁厚精度:与管坯的加热质量,各变形工序的工艺设计参数和调整参数,工具质量及其润滑质量等有关
壁厚允许偏差: ρ=(S-Si)/Si×100% S:横截面上最大或最小壁厚
e. 钢管弯曲度:表示钢管的弯度:每米钢管长度的弯曲度、钢管全长的弯曲度
②生产过程中产生的,如轧制工艺参数设计不正确,模具表面不光滑,润滑条件不好,孔型设计及调整不合理。
③ 管坯(钢管)在加热轧制,热处理以及矫直过程中,如果因为加热温度控制不当,变形不均匀,加热冷却速度不合理或矫直变形量太大而产生过大的残余应力,那么也有可能导致钢管产生表面裂纹。
6.钢管理化性能:常温力学性能、高温力学性能、低温性能、抗腐蚀性能。钢管的理化性能主要取决于钢的化学成分,组织结构和钢的纯净度以及钢管的热处理方式等。
8.钢管金相组织:低倍组织(宏观)、高倍组织(微观) M、B、P、F、A、S
1.化学成分分析:化学分析法、仪器分析法(红外C—S仪、直读光谱仪、zcP等)。
④钢管弯曲度检查:直尺、水平尺(1m)、塞尺、细线测每米弯曲度、全长弯曲度。
①拉伸试验:测应力和变形,判定材料的强度(YS、TS)和塑性指标(A、Z)
①高倍检验(微观分析):非金属夹杂物100x GB/T 10561 晶粒度:级别、级差
A法评级:A类-硫化物 B类-氧化物 C类-硅酸盐 D-球状氧化 DS类
a. 酸蚀检验法、b. 硫印检验法(管坯检验,显示低培组织及缺陷,如疏松、偏析、皮下气泡、翻皮、白点、夹杂物等。
1.现行无缝钢管标准:共有47项 其中:GB 25 项 HB 3 项 特殊用途19项;基础 2项 产品 45项
2.常用标准:① GB/T 2102-2006 钢管的验收、包装、标志和质量证明书。
② GB/T 17395-1998 无缝钢管尺寸、外形、重量及允许偏差。
有热镀锌和电镀锌两大类。热镀锌有湿法、干法、铅锌法、氧化还原法等,其工艺流程如图所示。
不同热镀锌方法的主要区别在钢管酸浸清洗后,用什么方法活化管体表面提高镀锌质量。现生产中主要采用干法和氧化还原法,其特点见表。
电镀锌的锌层表面十分光滑致密、组织均匀;具有良好的力学性能和抗腐蚀能力;锌耗比热镀锌低60%~75%。电镀锌在技术上有一定的复杂性,但对单面镀层,内外表面镀层厚度不同的双面镀层,以及薄壁管镀锌等皆须采用此法。
斜轧过程在无缝钢管生产中得到了广泛应用,穿孔、轧管、均整、定径都可用斜轧实现。斜轧管机有二辊、三辊两种系统。虽然轧管机的结构不同,轧辊的形状与轧辊在空间的位置不同,但是,在辊、管组成的变形区里,调整参数间的几何关系和轧制过程基本上是相同的。
我国早在20世纪80年代就开始对斜轧理论进行了一系列研究,如对变形区内金属变形规律、应力分布、轧制力和轧制力矩进行的研究;对孔腔形成机理的研究;对单主动导盘斜轧穿孔管坯时金属的宏观变形、导盘对轧件的作用力和沿轧件径向变形与应力的不均匀分布的研究;对三辊联合穿孔机的变形区与变形特点利用三维钢塑性有限元对斜轧稳态轧制过程进行的研究;采用三维钢塑性有限元法对斜轧穿孔过程进行模拟分析;应用有关多余变形的概念和计算多余变形的方法,研究锥形辊斜轧延伸工艺。
1、轧管理论:纵轧轧管的理论研究主要体现在连轧管机的上浮动芯棒和限动芯棒的连轧工艺的研究
2、张力减径工艺基础理论:我国制造的直径76mm、108mm两套张力减径试验样机与20世纪70年代初投入试生产,为国内张力减径设计,生产工艺,摸索了经验。
渗氮温度在500°C时,具有最高的表面硬度,超过该温度则杉出现硬度的降低,其原因在于500°C以下氮化物的聚集不显著,菸散度大的缘故。同时考虑到氮化温度与硬度、氮化层深度、无缝钢管变形量等众多因素的关系,通常将氮化温度控制在480〜560°C 渗氮与硬度的关系见图8-2。
渗氮一定时间后,表面硬度达到最大值,延长时间后硬度稍芊下降,如渗氮温度越高则达到最大值的时间越短,硬度値就越低; K化层的深度随时间的延长而增加。图8-3为38CrMoAl氮化钢氣 ft层硬度、深度与温度、时间的关系。
氨的分解率是氨分解产生的氢和氮占炉气体积的百分比,分解高则炉内氢浓度高,使氮原子处于停顿状态,即阻止氮原子的渗入;反之分解率低则造成与无缝钢管表面接触的活性氮原子数量减少,$ 气又使脆性增加。分解率与炉内压力、氨的流量、无缝钢管表面的状2 以及有无催化剂等因素有关,因此分解率应控制在一个最适当的S 围内,.一般而言氨的分解率控制在18%〜45%左右,具体参见导 8~11。氨分解率的大小可以通过氨流量以及炉内压力的高低1 调节。
根据渗氮层深度和硬度的要求可以进行一段、二段或三段渗_ 处理,同时要根据无缝钢管的材质与技术要求来加以合理的选择,要if 行综合的分析并结合其工作的条件,不要顾此失彼,要明确的是化无缝钢管的预备热处理是调质处理。
三种渗氮工艺有各自的特点,等温氮化(或称为一段氮化)斥 的表面硬度高约HV1000〜1200,变形小,脆性低,工艺简单,抵作方便,但工艺周期长,成本高,渗层浅,多用于氮化层浅、尺、J 精密、硬度髙的无缝钢管;二段渗氮与等温氮化相比,表面硬度稍介 (HV850〜1000),变形略有增大,但渗速快,多用于氮化层较深 批量较大的无缝钢管;三段氮化渗速快,但硬度、脆性、变形等方面% 比等温氮化效果差。因此对于无缝钢管零件需要进行氮化处理时,要书 据无缝钢管的技术要求、工作特点、生产效率、制造成本等几个方面if 行综合评定后才能确定最佳的氮化工艺。
需要说明的是对于碳钢和铸铁无缝钢管,为了提高工件的抗蚀能:i 而进行的渗氮称为抗蚀氮化,其渗氮层深度在0.02〜0.04mm,珠面形成一层薄而致密的白色氮化层(e相在0.015〜O.OOOmm). J 有化学稳定性高的特点,在潮湿空气、过热蒸汽、海水、气体燃觉 产物以及弱碱溶液中具有不同的抗腐蚀性,进行抗蚀氮化的无缝钢管琴进行正火或调质处理。采用抗蚀氮化可代替镀镍、镀锌、发蓝、碌化以及其他表面处理方法,有时甚至能代替合金钢和不锈钢等。货工艺的工艺温度在550〜650°C左右,时间为1〜3h,氨分解率在45%〜70%
声测管得材质好的话,可以不用灌水。(检测管的底口必须封死) 严格来说应该是下完一节钢筋笼灌一次水,也可以在下完钢筋笼后灌水,灌完水之后将上口封死。 灌水有三个目的:①平衡声测管内外的水压力②防止泥浆进入③检桩时提供一个超声波的传播介质。一般情况下检测管的 声测管的长度等同于桩长,桩下面没设钢筋笼的位置采用3根钢筋保护检测管,声测管的下口一般距离设计桩底标高10cm,上口超过设计桩顶标高即可。
一、工程概况火星北路浏阳河特大桥位于长沙市北部,自芙蓉区火星村跨越浏阳河至开福区鸭子铺。主桥为中承式类双层钢箱拱桥,上部结构:主拱为悬链线钢箱拱肋无绞结构,通过64根柔性吊杆,每一吊点采用双杆自主拱吊住16道钢箱型横梁,横梁间设4道钢箱型纵梁,桥面荷载通过钢筋混凝土双肋板梁结构传递给钢横梁;下部结构:拱桥两侧主承台为两个42.4*26.04*4.5的大体积钢筋混凝土承台,基础为钻孔灌注桩基础。共有桩长为59m,桩径为2m的桩60根, 根据工程地质状况,决定采用φ200冲击钻机在枯水季节冲击成孔,钻孔过程中根据地质变化情况选择泥浆和冲程。
该桥钻孔施工的工艺流程为:1.测量定位;2.加固钻机底座;3.埋设钢护筒;4. 冲击钻机安装就位;5. 冲击成孔;6.成孔检查;7.清孔;8.钢筋笼制作、吊装、就位;9.二次清孔;10.灌注混凝土;11.待砼终凝后拔出钢护筒。(一)测量定位建立施工测量控制网,校核测量仪器,桩位放样座标、高程计算,根据测量控制网用全站仪定出桩位。(二)加固钻机底座桥位地势较平坦开阔,属冲积堆积区,砾岩裂隙较发育,局部溶蚀强烈,为岩溶发育区,由于地质情况复杂,因此在钻机就位前,对钻机底座进行支垫和加固,防止钻机在冲击成孔过程中下沉和倾斜。(三)埋设钢护筒为固定桩位,保护孔口不坍塌,保持孔内水头以维护孔壁,用10t振动锤将钢护筒压入,入土深度根据河床土质情况来确定,一般应埋入河床冲刷线m并穿过软土、粉沙层,钢护筒采用10mm厚的钢板卷制成筒状,直径为2.3m, 护筒保证有足够的强度和刚度且不漏水。(四)冲击钻机安装就位钻机就位时,垫平钻机,保持平稳,严防在冲击过程中移位、沉陷;钻机就位后,进行桩位校核,保证就位准确。孔前除保证“三通”外,应储备一定数量的粘土、片石,以备调配泥浆比重,处理斜孔和穿越溶洞时使用。(五)冲击成孔开孔一般投入大比例粘土,造浓浆(相对密度1.4~1.6),采用小冲程进行底打紧击造孔,以上述方式穿过覆盖层、粉沙层2~4m后,再按正常的冲击成孔工艺成孔,钻进过程中要严密观察护筒内的水头,保持比施工水位高出1.5~2m, 并派专人检查地质变化情况及泥浆指标。根据不同的地质状况调整不同指标的泥浆,当通过漂石层时,如表面不平整,应先投放粘土或小片石将表面垫平,再冲击钻进,防止发生斜孔、塌孔现象。冲锤击穿溶洞顶板后,无论溶洞是否填充、半填充、未填充,也无论是否漏浆,均向孔内投入片石,同时视情况亦可加适量3~5cm的碎石、袋装粘土和水泥,然后采用小冲程冲击,如此反复操作,达到挤塞溶洞通道、加固孔壁,以便顺利通过溶洞。为防止钻架使用时间过长,可能会产生位移;孔内有探头石,会造成偏孔, 因此每个台班检查钻机不少于一次。(六)成孔检查当孔深达到设计要求后,应对孔深、孔径、垂直度进行终孔检查。检查方法是:用φ25的钢筋焊成直径为2m,长为9m的检孔器,吊入孔内直放到孔底检测,如检孔器放不到孔底,则说明桩孔有缩径或局部偏孔现象,在检孔器沉入孔底的过程中,根据悬挂着检孔器的钢丝绳的倾斜程度可判断孔壁是否倾斜:倾斜度用铅垂线、钢尺检测。(七)清孔当钻孔达到设计深度,经建设各责任主体方确认后,开始清孔。清孔采用换浆法进行,以已净化的、相对密度较低的泥浆压入,把相对密度较大的泥浆和悬浮钻渣换出孔外,保持孔内液面稳定,直到孔内泥浆的各项指标及沉渣厚度符合规范及设计要求为止。(八)钢筋笼的制作、吊装、就位钢筋笼就近成型。钢笼主筋搭接采用闪光对焊,箍筋与主筋采用点焊,主筋与加劲箍应100%焊接牢固。由于钢筋笼直径比较大,采用在钢筋笼加劲箍内加焊三角形撑,以加强钢筋笼结构的整体性,防止钢筋笼在吊装过程中变形。钢筋笼制作时安装声测管,声测管上下管口用木塞封口。在每个加劲箍外周焊接8个7cm厚钢筋笼保护层“耳环”,钢筋笼制作完成后,按程序通过验收后采用50T吊车吊放。钢筋笼采用分2段制作和吊装,两段钢筋笼的主筋错开搭接、焊接长度应符合设计、规范要求,三角形撑在钢筋笼下放过程中割除。导管的安装:导管直径为φ300mm, 壁厚5mm,每节长2~5m, 另配1m长导管各一节,接头由丝扣连接,并用橡胶圈密封。导管使用前经过接头抗拉试验和不小于孔内水深1.3倍的水密承压试验。混凝土灌注开始时,导管底部距孔底的距离约为40cm。(九)二次清孔钢笼安放完毕后,孔内泥浆各项指标、孔内沉渣如超出要求,应采用二次清孔方法,直到泥浆各项指标、沉渣符合要求为止。二次清孔后及时组织实施灌桩工作。(十)灌注水下混凝土各项准备工作完备, 应及时组织实施灌桩工作,一般情况下, 导管及漏斗、储料斗安装完毕, 灌注工作随即开始, 它包括两个部分: 拌和及运输、 现场浇注。混凝土的拌和主要控制配合比、 拌和时间、 坍落度、和易性等几个指标。施工时要根据设计配合比, 材料当时的含水量调节成施工配合比, 并依此认真计量, 加强现场监督、 现场检查并随机留取规定组数的试件。混凝土运输采用混凝土输送泵,混凝土的运输能力与拌和能力一样, 要与灌注速度相适应, 充分保证灌注工作的不间断。混凝土的现场灌注工作, 安排有统一的指挥, 且各工种分工明确, 协调配合, 快速连续施工, 做好现场的各种有关记录,在施工过程中, 注意下面几个关键问题:1.初灌时, 一次性投料数量确保混凝土埋置导管大于1m , 孔口自然返水, 导管内与外部水隔绝, 处于正常工作状态。尽量缩短导管拆卸时间, 做好灌注记录。2.灌注过程中, 根据操作进展, 定时测量混凝土面高度, 并与灌入的混凝土量的折算值相比较, 以确定是否有坍孔等情况发生, 以测定埋深来控制提升、拆卸导管, 导管的埋置深度宜在2~6m , 最小埋深大于2m, 最大埋深不得大于6m,提升导管时, 应轻提轻放, 并尽量居中, 垂直, 以免挂笼、损坏或超提。注意导管是否漏水, 渗水, 发现问题及时处理。拆下的导管及时冲洗, 检查,以利于再次使用。保证导管内混凝土上下连续, 当含有空气时, 后续混凝土要缓缓灌入, 避免在导管内形成高压气囊, 影响工程质量。3.导管外混凝土上升过程中, 对钢筋笼有向上的浮力, 要采取适当的措施加以避免, 比如, 在钢筋笼顶部适当加压;当孔内混凝土顶面距钢筋笼底部约1m时,降低混凝土的灌注速度等。4.灌注后期接近桩顶时, 要尽量做到混凝土落差在6m 以上, 以增加混凝土下落的冲击力。因为此时导管外泥浆稠度增加, 比重增大, 上升阻力也大,且混凝土落差已相对减小很多, 容易出现顶升困难。为此, 可向孔内加水稀释泥浆, 掏出部分沉淀物, 必要时可适当小幅转动提放导管。最后的测深工作尤其要细、认真, 充分考虑浮浆及混合杂物的厚度,确保有效的桩顶标高。5.在施工中, 做好原始数据的记录, 检测混凝土的相关指标, 制作混凝土试件。三、混凝土灌注桩施工过程的常见问题及处理方法(一)孔壁坍塌原因:泥浆稠度小,护筒埋深不够,松软地层进尺速度太快,孔内泥浆水位高度不够,在地质不好的情况下处理不及时。技术措施:在松散砂土钻进时,控制进尺速度,选用高粘度、不分散的优质泥浆,如PHP泥浆;确保护筒埋设已穿过软土、粉沙层;钻进时及时补充孔内泥浆,保证孔内水头相对稳定。(二)斜孔原因:当遇到岩面倾斜、大孤石、探头石或土层软硬不匀时,稍有不注意就会造成斜孔。技术措施:如有探头石、大孤石,低速将石打碎;当遇到岩面倾斜,采用片石填平后再冲击;遇到土层软硬不匀,致使锤头受力不均时,往孔内填入底标号混凝土,待混凝土凝固到一定强度再用锤低速打进。(三)卡锤原因:钻进速度太快,地质情况不明,岩面倾斜、遇有孤石、溶洞或被坍孔落下的石块卡住等。技术措施:应严格按操作规程进行钻孔作业。当遇有岩面倾斜或溶洞时,应采取前述有关措施先期进行处理后,再按常规进行钻孔;卡锤后不宜强提,只宜轻提,采用冲、吸等方法将锤周围松动后再提出。(四)沉渣过厚原因:泥浆指标不符合要求,含砂率过大;下放钢筋笼时间过长或钢筋笼碰撞孔壁,造成塌方。技术措施:清孔时严格控制泥浆指标,保证清孔后,孔内泥浆各项指标符合设计要求;尽量缩短下放钢筋笼的时间,但下放时应徐徐下放,不得快速冲下。如钢笼安放完毕后,孔内沉渣仍超出要求,应采用二次清孔方法,直到沉渣符合要求为止。(五)灌注混凝土时钢筋笼上浮原因:灌注混凝土时,埋管过深;或混凝土供应不上,混凝土已初凝,混凝土抱死钢筋笼。技术措施:经常上下提动导管,控制埋管深度在2-6m 范围内。砼的供应要连续均衡。(六)断桩与夹泥层原因:混凝土坍落度太小,骨料不符合要求,粒径太大;灌注过程未及时提升导管,造成导管堵塞;混凝土供应不及时,间歇时间过长;提升导管时碰撞钢筋笼,使孔壁土体混入混凝土中;超提导管。技术措施:混凝土要经常测定坍落度,检查骨料是否符合规范要求;边浇灌混凝土边提升导管,并勘测混凝土顶面高度,随时掌握埋管深度,避免塞管及导管拔出混凝土面;做好混凝土的供应工作,保证混凝土浇灌的连续进行;提升导管要使导管垂直上升,并注意观察钢筋笼有否上升或移动。灌注水下砼前检查导管是否漏水、弯曲,发现问题及时更换。五、结语水下灌注桩的施工过程是人们无法直接能观察到,而河床中桩基础的施工存在的困难更大,它还需要克服河床底土层的结构变化与水流的影响,因此,其桩基础的质量是否能达到要求,需要技术人员预先制定严谨的施工方案,多方面了解现场实际情况,遇到问题及时处理。要多借鉴以往的经验,结合实际情况去进行施工,以杜绝质量隐患, 减少经济损失。Kaiyun 开云Kaiyun 开云Kaiyun 开云